

Great Watchdogs
Version 1.2, updated January 2004

Jack G. Ganssle

jack@ganssle.com

The Ganssle Group
PO Box 38346

Baltimore, MD 21231
 (410) 504-6660

fax (647) 439-1454

Jack Ganssle believes that embedded development can be much more efficient than it
usually is, and that we can – and must – create more reliable products. He conducts
one-day seminars that teach ways to produce better firmware faster. For more
information see www.ganssle.com.

© 2004 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Building a Great Watchdog

Launched in January of 1994, the Clementine spacecraft spent two very successful
months mapping the moon before leaving lunar orbit to head towards near-Earth asteroid
Geographos.

A dual-processor Honeywell 1750 system handled telemetry and various spacecraft
functions. Though the 1750 could control Clementine’s thrusters, it did so only in
emergency situations; all routine thruster operations were under ground control.

On May 7, 1994, the 1750 experienced a floating point exception. This wasn’t unusual;
some 3000 prior exceptions had been detected and handled properly. But immediately
after the May 7 event downlinked data started varying wildly and nonsensically. Then the
data froze. Controllers spent 20 minutes trying to bring the system back to life by sending
software resets to the 1750; all were ignored. A hardware reset command finally brought
Clementine back on- line.

Alive, yes, even communicating with the ground, but with virtually no fuel left.

The evidence suggests that the 1750 locked up, probably due to a software crash. While
hung the processor turned on one or more thrusters, dumping fuel and setting the
spacecraft spinning at 80 RPM. In other words, it appears the code ran wild, firing
thrusters it should never have enabled; they kept firing till the tanks ran nearly dry and
the hardware reset closed the valves.

The mission to Geographos had to be abandoned.

Designers had worried about this sort of problem and implemented a software thruster
timeout. That, of course, failed when the firmware hung.

The 1750’s built- in watchdog timer hardware was not used, over the objections of the
lead software designer. With no automatic “reset” button, success of the mission rested in
the abilities of the controllers on Earth to detect problems quickly and send a hardware
reset. For the lack of a few lines of watchdog code the mission was lost.

Though such a fuel dump had never occurred on Clementine before, roughly 16 times
before the May 7 event hardware resets from the ground had been required to bring the
spacecraft’s firmware back to life. One might also wonder why some 3000 previous
floating point exceptions were part of the mission’s normal firmware profile.

Not surprisingly, the software team wished they had indeed used the watchdog, and had
not implemented the thruster timeout in firmware. They also noted, though, that a normal,
simple, watchdog may not have been robust enough to catch the failure mode.

© 2004 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Contrast this with Pathfinder, a mission whose software also famously hung, but which
was saved by a reliable watchdog. The software team found and fixed the bug, uploading
new code to a target system 40 million miles away, enabling an amazing roving scientific
mission on Mars.

Watchdog timers (WDTs) are our failsafe, our last line of defense, an option taken only
when all else fa ils - right? These missions (Clementine had been reset 16 times prior to
the failure) and so many others suggest to me that WDTs are not emergency outs, but
integral parts of our systems. The WDT is as important as main() or the runtime
library, it’s an asset that is likely to be used, and maybe used a lot.

Outer space is a hostile environment, of course, with high intensity radiation fields,
thermal extremes and vibrations we’d never see on Earth. Do we have these worries
when designing Earth-bound systems?

Maybe so. Intel revealed that the McKinley processor’s ultra fine design rules and huge
transistor budget means cosmic rays may flip on-chip bits. The Itanium 2 processor, also
sporting an astronomical transistor budget and small geometry, includes an on-board
system management unit to handle transient hardware failures. The hardware ain’t what it
used to be – even if our software were perfect.

But too much (all?) firmware is not perfect. Consider this unfortunately true story from
Ed VanderPloeg:

“The world has reached a new embedded software milestone: I had to reboot my
hood fan. That's right, the range exhaust fan in the kitchen. It's a simple model
from a popular North American company. It has six buttons on the front: 3 for
low, medium, and high fan speeds and 3 more for low, medium, and high light
levels. Press a button once and the hood fan does what the button says. Press the
same button again and the fan or lights turn off. That's it. Nothing fancy. And it
needed rebooting via the breaker panel.”

“Apparently the thing has a micro to control the light levels and fan speeds, and it
also has a temperature sensor to automatically switch the fan to high speed if the
temperature exceeds some fixed threshold. Well, one day we were cooking
dinner as usual, steaming a pot of potatoes, and suddenly the fan kicks into high
speed and the lights start flashing. "Hmm, flaky sensor or buggy sensor
software", I think to myself.”

“The food happened to be done so I turned off the stove and tried to turn off the
fan, but I suppose it wanted things to cool off first. Fine. So after ten minutes or
so the fan and lights turned off on their own. I then went to turn on the lights, but
instead they flashed continuously, with the flash rate depending on the brightness
level I selected."

© 2004 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

“So just for fun I tried turning on the fan, but any of the three fan speed buttons
produced only high speed. "What 'smart' feature is this?", I wondered to myself.
Maybe it needed to rest a while. So I turned off the fan & lights and went back to
finish my dinner. For the rest of the evening the fan & lights would turn on and
off at random intervals and random levels, so I gave up on the idea that it would
self-correct. So with a heavy heart I went over to the breaker panel, flipped the
hood fan breaker to & fro, and the hood fan was once again well-behaved.”

“For the next few days, my wife said that I was moping around as if someone had
died. I would tell everyone I met, even complete strangers, about what happened:
"Hey, know what? I had to reboot my hood fan the other night!". The responses
were varied, ranging from "Freak!" to "Sounds like what happened to my
toaster...". Fellow programmers would either chuckle or stare in common
disbelief.”

“What's the embedded world coming to? Will programmers and companies
everywhere realize the cost of their mistakes and clean up their act? Or will the
entire world become accustomed to occasionally rebooting everything they own?
Would the expensive embedded devices then come with a "reset" button,
advertised as a feature? Or will programmer jokes become as common and
ruthless as lawyer jokes? I wish I knew the answer. I can only hope for the best,
but I fear the worst.”

One developer admitted to me that his consumer products company could care less about
the correctness of firmware. Reboot – who cares? Customers are used to this, trained by
decades of desktop computer disappointments. Hit the reset switch, cycle power, remove
the batteries for 15 minutes, even pre-teens know the tricks of coping with legions of
embedded devices.

Crummy firmware is the norm, but in my opinion is totally unacceptable. Shipping a
defective product in any other field is like opening the door to torts. So far the embedded
world has been mostly immune from predatory lawyers, but that Brigadoon- like isolation
is unlikely to continue. Besides, it’s simply unethical to produce junk.

But it’s hard, even impossible, to produce perfect firmware. We must strive to make the
code correct, but also design our systems to cleanly handle failures. In other words, a
healthy dose of paranoia leads to better systems.

A Watchdog Timer (WDT) is an important line of defense in making reliable products.

Well-designed watchdog timers fire off a lot, daily and quietly saving systems and lives
without the esteem offered to other, human, heroes. Perhaps the developers producing
such reliable WDTs deserve a parade. Poorly-designed WDTs fire off a lot, too,
sometimes saving things, sometimes making them worse. A simple-minded watchdog
implemented in a non-safety critical system won’t threaten health or lives, but can result
in systems that hang and do strange things that tick off our customers. No business can

© 2004 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

tolerate unhappy customers, so unless your code is perfect (whose is?) it’s best in all but
the most cost-sensitive apps to build a really great WDT.

An effective WDT is far more than a timer that drives reset. Such simplicity might have
saved Clementine, but would it fire when the code tumbles into a really weird mode like
that experienced by Ed’s hood fan?

Internal WDTs
Internal watchdogs are those that are built into the processor chip. Virtually all highly
integrated embedded processors include a wealth of peripherals, often with some sort of
watchdog. Most are brain-dead WDTs suitable for only the lowest-end applications.

Let’s look at a few. Toshiba’s TMP96141AF is part of their TLCS-900 family of quite
nice microprocessors, which offers a wide range of extremely versatile on-board
peripherals. All have pretty much the same watchdog circuit. As the data sheet says, “The
TMP96141AF is containing watchdog timer of Runaway detecting.”

Ahem. And I thought the days of Jinglish were over. Anyway, the part generates a non-
maskable interrupt when the watchdog times out, which is either a very, very bad idea or
a wonderfully clever one. It’s clever only if the system produces an NMI, waits a while,
and only then asserts reset, which the Toshiba part unhappily cannot do. Reset and NMI
are synchronous.

A nice feature is that it takes two different I/O operations to disable the WDT, so there
are slim chances of a runaway program turning off this protective feature.

Motorola’s widely-used 68332 variant of their CPU32 family (like most of these 68k
embedded parts) also includes a watchdog. It’s a simple-minded thing meant for low-
reliability applications only. Unlike a lot of WDTs, user code must write two different
values (0x55 and 0xaa) to the WDT control register to insure the device does not time
out. This is a very good thing – it limits the chances of rogue software accidentally
issuing the command needed to appease the watchdog. I’m not thrilled with the fact that
any amount of time may elapse between the two writes (up to the timeout period). Two
back-to-back writes would further reduce the chances of random watchdog tickles,
though once would have to insure no interrupt could preempt the paired writes. And the
0x55/0xaa twosome is often used in RAM tests; since the 68k I/O registers are memory
mapped, a runaway RAM test could keep the device from resetting.

The 68332’s WDT drives reset, not some exception handling interrupt or NMI. This
makes a lot of sense, since any software failure that causes the stack pointer to go odd
will crash the code, and a further exception-handling interrupt of any sort would drive the
part into a “double bus fault”. The hardware is such that it takes a reset to exit this
condition.

© 2004 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Motorola’s popular Coldfire parts are similar. The MCF5204, for instance, will let the
code write to the WDT control registers only once. Cool! Crashing code, which might do
all sorts of silly things, cannot reprogram the protective mechanism. However, it’s
possible to change the reset interrupt vector at any time, pretty much invalidating the
clever write-once design.

Like the CPU32 parts a 0x55/0xaa sequence keeps the WDT from timing out, and back-
to-back writes aren’t required. The Coldfire datasheet touts this as an advantage since it
can handle interrupts between the two tickle instructions, but I’d prefer less of a window.
The Coldfire has a fault-on-fault condition much like the CPU32’s double bus fault, so
reset is also the only option when WDT fires – which is a good thing.

There’s no external indication that the WDT timed out, perhaps to save pins. That means
your hardware/software must be designed so at a warm boot the code can issue a from-
the-ground-up reset to every peripheral to clear weird modes that may accompany a
WDT timeout.

Philip’s XA processors require two sequential writes of 0xa5 and 0x5a to the WDT. But
like the Coldfire there’s no external indication of a timeout, and it appears the watchdog
reset isn’t even a complete CPU restart – the docs suggest it’s just a reload of the
program counter. Yikes – what if the processor’s internal states were in disarray from
code running amok or a hardware glitch?

Dallas Semiconductor’s DS80C320, an 8051 variant, has a very powerful WDT circuit
that generates a special watchdog interrupt 128 cycles before automatically – and
irrevocably – performing a hardware reset. This gives your code a chance to safe the
system, and leave debugging breadcrumbs behind before a complete system restart
begins. Pretty cool.

Summary: What’s Wrong With Many Internal WDTs:
• A watchdog timeout must assert a hardware reset to guarantee the

processor comes back to life. Reloading the program counter may not
properly reinitialize the CPU’s internals.

• WDTs that issue NMI without a reset may not properly reset a crashed
system.

• A WDT that takes a simple toggle of an I/O line isn’t very safe
• When a pair of tickles uses common values like 0x55 and 0xaa, other

routines – like a RAM test – may accidentally service the WDT.
• Watch out for WDTs whose control registers can be reprogrammed as

the system runs; crashed code could disable the watchdog.
• If a WDT timeout does not assert a pin on the processor, you’ll have to

add hardware to reset every peripheral after a timeout. Otherwise, though
the CPU is back to normal, a confused I/O device may keep the system
from running properly.

© 2004 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

External WDTs
Many of the supervisory chips we buy to manage a processor’s reset line include built- in
WDTs.

TI’s UCC3946 is one of many nice power supervisor parts that does an excellent job of
driving reset only when Vcc is legal. In a nice small 8 pin SMT package it eats practically
no PCB real estate. It’s not connected to the CPU’s clock, so the WDT will output a reset
to the hardware safe- ing mechanisms even if there’s a crystal failure. But it’s too darn
simple: to avoid a timeout just wiggle the input bit once in a while. Crashed code could
do this in any of a million ways.

TI isn’t the only purveyor of simplistic WDTs. Maxim’s MAX823 and many other
versions are similar. The catalogs of a dozen other vendors list equally dull and
ineffective watchdogs.

But both TI and Maxim do offer more sophisticated devices. Consider TI’s TPS3813 and
Maxim’s MAX6323. Both are “Window Watchdogs”. Unlike the internal versions
described above that avoid timeouts using two different data writes (like a 0x55 and then
0xaa), these require tickling within certain time bands. Toggle the WDT input too slowly,
too fast, or not at all, and a timeout will occur. That greatly reduces the chances that a
program run amok will create the precise timing needed to satisfy the watchdog. Since a
crashed program will likely speed up or bog down if it does anything at all, errant
strobing of the tickle bit will almost certainly be outside the time band required.

TI’s TPS3813 is easy to use and offers a nice windowing WDT feature.

© 2004 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Window timing of Maxim’s equally cool MAX6323.

Characteristics of Great WDTs
What’s the rationale behind an awesome watchdog timer? The perfect WDT should
detect all erratic and insane software modes. It must not make any assumptions about the
condition of the software or the hardware; in the real world anything that can go wrong
will. It must bring the system back to normal operation no matter what went wrong,
whether from a software defect, RAM glitch, or bit flip from cosmic rays.

It’s impossible to recover from a hardware failure that keeps the computer from running
properly, but at the least the WDT must put the system into a safe state. Finally, it should
leave breadcrumbs behind, generating debug information for the developers. After all, a
watchdog timeout is the yin and yang of an embedded system. It saves the system,
keeping customers happy, yet demonstrates an inherent design flaw that should be
addressed. Without debug info, troubleshooting these infrequent and erratic events is
close to impossible.

What does this mean in practice?

An effective watchdog is independent from the main system. Though all WDTs are a
blend of interacting hardware and software, something external to the processor must
always be poised, like the sword of Damocles, ready to intervene as soon as a crash
occurs. Pure software implementations are simply not reliable.

There’s only one kind of intervention that’s effective: an immediate reset to the processor
and all connected peripherals. Many embedded systems have a watchdog that initiates a
non-maskable interrupt. Designers figure that firing off NMI rather than reset preserves

© 2004 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

some of the system’s context. It’s easy to seed debugging assets in the NMI handler (like
a stack capture) to aid in resolving the crash’s root cause. That’s a great idea, except that
it does not work.

All we really know when the WDT fires is that something truly awful happened.
Software bug? Perhaps. Hardware glitch? Also possible. Can you insure that the error
wasn’t something that totally scrambled the processor’s internal logic states? I worked
with one system where a motor in another room induced so much EMF that our
instrument sometimes went bonkers. We tracked this down to a sub-nanosecond glitch on
one CPU input, a glitch so short that the processor went into an undocumented weird
mode. Only a reset brought it back to life.

Some CPUs, notably the 68k and ColdFire, will throw an exception if a software crash
causes the stack pointer to go odd. That’s not bad… except that any watchdog circuit that
then drives the CPU’s non-maskable interrupt will unavoidably invoke code that pushes
the system’s context, creating a second stack fault. The CPU halts, staying halted till a
reset, and only a reset, comes along.

Drive reset; it’s the only reliable way to bring a confused microprocessor back to lucidity.
Some clever designers, though, build circuits that drive NMI first, and then after a short
delay pound on reset. If the NMI works then its exception handler can log debug
information and then halt. It may also signal other connected devices that this unit is
going offline for a while. The pending reset guarantees an utterly clean restart of the
code. Don’t be tempted to use the NMI handler to safe dangerous hardware; that task
always, in every system, belongs to a circuit external to the possibly confused CPU.

Don’t forget to reset the whole computer system; a simple CPU restart may not be
enough. Are the peripherals absolutely, positively, in a sane mode? Maybe not. Runaway
code may have issued all sorts of I/O instructions that placed complex devices in insane
modes. Give every peripheral a hardware reset; software resets may get lost in all of the
I/O chatter.

Consider what the system must do to be totally safe after a failure. Maybe a pacemaker
needs to reboot in a heartbeat (so to speak)… or maybe backup hardware should issue a
few ticks if reboots are slow.

One thickness gauge that beams high energy gamma rays through 4 inches of hot steel
failed in a spectacular way. Defective hardware crashed the code. The WDT properly
closed the protective lead shutter, blocking off the 5 curie cesium source. I was present,
and watched incredulously as the engineering VP put his head in path of the beam; the
crashed code, still executing something, tricked the watchdog into opening the shutter,
beaming high intensity radiation through the veep’s forehead. I wonder to this day what
eventually became of the man.

A really effective watchdog cannot use the CPU’s clock, which may fail. A bad solder
joint on the crystal, poor design that doesn’t work well over temperature extremes, or

© 2004 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

numerous other problems can shut down the oscillator. This suggests that no WDT
internal to the CPU is really safe. All (that I know of) share the processor’s clock.

Under no circumstances should the software be able to reprogram the WDT or any of its
necessary components (like reset vectors, I/O pins used by the watchdog, etc). Assume
runaway code runs under the guidance of a malevolent deity.

Build a watchdog that monitors the entire system’s operation. Don’t assume that things
are fine just because some loop or ISR runs often enough to tickle the WDT. A software-
only watchdog should look at a variety of parameters to insure the product is healthy,
kicking the dog only if everything is OK. What is a software crash, after all?
Occasionally the system executes a HALT and stops, but more often the code vectors off
to a random location, continuing to run instructions. Maybe only one task crashed.
Perhaps only one is still alive – no doubt that which kicks the dog.

Think about what can go wrong in your system. Take corrective action when that’s
possible, but initiate a reset when it’s not. For instance, can your system recover from
exceptions like floating point overflows or divides by zero? If not, these conditions may
well signal the early stages of a crash. Either handle these competently or initiate a WDT
timeout. For the cost of a handful of lines of code you may keep a 60 Minutes camera
crew from appearing at your door.

It’s a good idea to flash an LED or otherwise indicate that the WDT kicked. A lot of
devices automatically recover from timeouts; they quickly come back to life with the
customer totally unaware a crash occurred. Unless you have a debug LED how do you
know if your precious creation is working properly, or occasionally invisibly resetting?
One outfit complained that over time, and with several thousand units in the field, their
product’s response time to user inputs degraded noticeably. A bit of research showed that
their system’s watchdog properly drove the CPU’s reset signal, and the code then
recognized a warm boot, going directly to the application with no indication to the users
that the time-out had occurred. We tracked the problem down to a floating input on the
CPU, that caused the software to crash - up to several thousand times per second. The
processor was spending most of its time resetting, leading to apparently slow user
response. An LED would have shown the problem during debug, long before customers
started yelling.

Everyone knows we should include a jumper to disable the WDT during debugging. But
few folks think this through. The jumper should be inserted to enable debugging, and
removed for normal operation. Otherwise if manufacturing forgets to install the jumper,
or if it falls out during shipment, the WDT won’t function. And there’s no production test
to check the watchdog’s operation.

Design the logic so the jumper disconnects the WDT from the reset line (possibly though
an inverter so an inserted jumper sets debug mode). Then the watchdog continues to
function even while debugging the system. It won’t reset the processor but will flash the

© 2004 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

LED. The light will blink a lot when breakpointing and singlestepping, but should never
come on during full-speed testing.

Using an Internal WDT
Most embedded processors that include high integration peripherals have some sort of
built- in WDT. Avoid these except in the most cost-sensitive or benign systems. Internal
units offer minimal protection from rogue code. Runaway software may reprogram the
WDT controller, many internal watchdogs will not generate a proper reset, and any
failure of the processor will make it impossible to put the hardware into a safe state. A
great WDT must be independent of the CPU it’s trying to protect.

However, in systems that really must use the internal versions, there’s plenty we can do
to make them more reliable. The conventional model of kicking a simple timer at erratic
intervals is too easily spoofed by runaway code.

A pair of design rules leads to decent WDTs: kick the dog only after your code has done
several unrelated good things, and make sure that erratic execution streams that wander
into your watchdog routine won’t issue incorrect tickles.

This is a great place to use a simple state machine. Suppose we define a global variable
named “state”. At the beginning of the main loop set state to 0x5555. Call
watchdog routine A, which adds an offset – say 0x1111 – to state and then insures the
variable is now 0x6666. Return if the compare matches; otherwise halt or take other
action that will cause the WDT to fire.

Later, maybe at the end of the main loop, add another offset to state, say 0x2222. Call
watchdog routine B, which makes sure state is now 0x8888. Set state to zero. Kick
the dog if the compare worked. Return. Halt otherwise.

Suppose the code crashes and for inscrutable reasons probably having to do with
Murphy’s Law and the perversity of nature vectors into wdt_b() just before the
kick_dog command. The protection mechanism of the state machine won’t help.

Characteristics of Great WDTs:
• Make no assumptions about the state of the system after a WDT reset;

hardware and software may be confused.
• Have hardware put the system into a safe state.
• Issue a hardware reset on timeout.
• Reset the peripherals as well.
• Insure a rogue program cannot reprogram WDT control registers.
• Leave debugging breadcrumbs behind.
• Insert a jumper to disable the WDT for debugging; remove it for

production units.
•

© 2004 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Perhaps it’s safe to assume that the code will again crash when wdt_b() returns, so the
system will miss the next watchdog tickle. But… perhaps not – who knows what evil
lurks in the mind of runaway software?

Is this fear paranoid? You bet. But the WDT might be the last line of defense between
deflecting the Earth-bound asteroid and utter disaster, or at least in rebooting the
pacemaker before grandpa collapses. Assuming that crashed code will operate in any
benign mode is naïve.

So wdt_b() double-checks variable “state” to insure the system halts (so the watchdog
can issue a reset) even if rogue code wandered into wdt_b() just before issuing the
kick_dog.

This is a trivial bit of code, but now runaway code that stumbles into any of the tickling
routines cannot errantly kick the dog. Further, no tickles will occur unless the entire main
loop executes in the proper sequence. If the code just calls routine B repeatedly, no
tickles will occur because it sets state to zero before exiting.

Add additional intermediate states as your fear of litigation dictates.

Normally I detest global variables, but this is a perfect application. Cruddy code that
mucks with the variable, errant tasks doing strange things, or any error that steps on the
global will make the WDT timeout.

Do put these actions in the program’s main loop, not inside an ISR. It’s fun to watch a
multitasking product crash – the entire system might be hung, but one task still responds
to interrupts. If your watchdog tickler stays alive as the world collapses around the rest of
the code, then the watchdog serves no useful purpose.

If the WDT doesn’t generate an external reset pulse (some processors handle the restart
internally) make sure the code issues a hardware reset to all peripherals immediately after
start-up. That may mean working with the EEs so an output bit resets every resettable
peripheral.

If you must take action to safe dangerous hardware, well, since there’s no way to
guarantee the code will come back to life, stay away from internal watchdogs. Broken
hardware will obviously cause this… but so can lousy code. A digital camera was
recalled recently when users found that turning the device off when in a certain mode
meant it could never be turned on again. The code wrote faulty info to flash memory that
created a permanent crash.

© 2004 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

An External WDT
The best watchdog is one that doesn’t rely on the processor or its software. It’s external
to the CPU, shares no resources, and is utterly simple, thus devoid of latent defects.

Use a PIC, a Z8, or other similar dirt-cheap processor as a system health monitor. These
parts have an independent clock, on-board memory, and the built- in timers we need to
build a truly great WDT. Being external, you can connect an output to hardware
interlocks that put dangerous machinery into safe states.

But when selecting a watchdog CPU check the part’s specs carefully. Tying the tickle to
the watchdog CPU’s interrupt input, for instance, may not work reliably. A slow part –
like most PICs – may not respond to a tickle of short duration. Consider TI’s MSP430
family or processors. They’re a very inexpensive (half a buck or so) series of 16 bit
processors that use virtually no power and no PCB real estate.

main(){
 state=0x5555;
 wdt_a();
 .
 .
 .
 .
 state+=0x2222;
 wdt_b();
}

wdt_a(){
 if (state!= 0x5555) halt;
 state+=0x1111;
}

wdt_b(){
 if (state!= 0x8888) halt;
 kick dog;
 if (state!= 0x8888) halt;
 state=0;
}

Pseudocode for handling an internal WDT

© 2004 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

The MSP430, a 16 bit CPU- that uses no PCB real estate. For metrically-challenged

readers, this is about 5/32” x 5/32”.

Tickle it using the same sort of state-machine described above. Like the windowed
watchdogs (TI’s TPS3813 and Maxim’s MAX6323), define min and max tickle intervals,
to further limit the chances that a runaway program deludes the WDT into avoiding a
reset.

Perhaps it seems extreme to add an entire computer just for the sake of a decent
watchdog. We’d be fools to add extra hardware to a highly cost-constrained product.
Most of us, though, build lower volume higher margin systems. A fifty cent part that
prevents the loss of an expensive mission, or that even saves the cost of one customer
support call, might make a lot of sense.

In a multiprocessor system it’s easy to turn all of the processors into watchdogs. Have
them exchange “I’m OK” messages periodically. The receiver resets the transmitter if it
stops speaking. This approach checks a lot of hardware and software, and requires little
circuitry.

© 2004 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Watchdog for a dual-processor system – each CPU watches the other.

WDTs for Multitasking
Tasking turns a linear bit of software into a multidimensional mix of tasks competing for
processor time. Each runs more or less independently of the others… which means each
can crash on its own, without bringing the entire system to its knees.

You can learn a lot about a system’s design just be observing its operation. Consider a
simple instrument with a display and various buttons. Press a button and hold it down; if
the display continues to update, odds are the system multitasks.

Yet in the same system a software crash might go undetected by conventional watchdog
strategies. If the display or keyboard tasks die, the main line code or a WDT task may
continue to run.

Any system that uses an ISR or a special task to tickle the watchdog but that does not
examine the health of all other tasks is not robust. Success lies in weaving the watchdog
into the fabric of all of the system’s tasks - which is happily much easier than it sounds.

First, build a watchdog task. It’s the only part of the software allowed to tickle the WDT.
If your system has an MMU mask off all I/O accesses to the WDT except those from this
task, so rogue code traps on an errant attempt to output to the watchdog.

© 2004 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Next, create a data structure that has one entry per task, with each entry being just an
integer.

When a task starts it increments its entry in the structure. Tasks that only start once and
stay active forever can increment the appropriate value each time through their main
loops.

Increment the data atomically – in a way that cannot be interrupted with the data half-
changed. ++TASKi (if TASK is an integer array) on an 8 bit CPU might not be atomic,
though it’s almost certainly OK on a 16 or 32 bitter. The safest way to both encapsulate
and insure atomic access to the data structure is to hide it behind another task. Use a
semaphore to eliminate concurrent shared accesses. Send increment messages to the task,
using the RTOS’s messaging resources.

As the program runs the number of counts for each task advances. Infrequently but at
regular intervals the watchdog task runs. Perhaps once a second, or maybe once a msec –
it’s all a function of your paranoia and the implications of a failure.

The watchdog task scans the structure, checking that the count stored for each task is
reasonable. One that runs often should have a high count; another which executes
infrequently will produce a smaller value. Part of the trick is determining what’s
reasonable for each task; stick with me - we’ll look at that shortly.

If the counts are unreasonable, halt and let the watchdog timeout. If everything is OK,
set all of the counts to zero and exit.

Why is this robust? Obvious ly, the watchdog monitors every task in the system. But it’s
also impossible for code that’s running amok to stumble into the WDT task and errantly
tickle the dog; by zeroing the array we guarantee it’s in a “bad” state.

I skipped over a critical step – how do we decide what’s a reasonable count for each task?
It might be possible to determine this analytically. If the WDT task runs once a second,
and one of the monitored tasks starts every 50 msec, then surely a count of around 20 is
reasonable.

Other activities are much harder to ascertain. What about a task that responds to
asynchronous inputs from other computers, say data packets that come at irregular
intervals? Even in cases of periodic events, if these drive a low-priority task they maybe
suspended for rather long intervals by higher-priority problems.

The solution is to broaden the data structure that maintains count information. Add min
and max fields to each entry. Each task must run at least min, but no more than max
times.

Now redesign the watchdog task to run in one of two modes. The first is the one already
described, and is used during normal system operation.

© 2004 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

The second mode is a debug environment enabled by a compile-time switch that collects
min and max data. Each time the WDT task runs it looks at the incremented counts and
sets new min and max values as needed. It tickles the watchdog each time it executes.

Run the product’s full test suite with this mode enabled. Maybe the system needs to
operate for a day or a week to get a decent profile of the min/max values. When you’re
satisfied that the tests are representative of the system’s real operation, manually examine
the collected data and adjust the parameters as seems necessary to give adequate margins
to the data.

What a pain! But by taking this step you’ll get a great watchdog – and a deep look into
your system’s timing. I’ve observed that few developers have much sense how their
creations perform in the time domain. “It seems to work” tells us little. Looking at the
data acquired by this profiling, though might tell a lot. Is it a surprise that task A runs 400
times a second? That might explain a previously-unknown performance bottleneck.

In a real time system we must manage and measure time; it’s every bit as important as
procedural issues, yet is oft ignored till a nagging problem turns into an unacceptable
symptom. This watchdog scheme forces you to think in the time domain, and by its
nature profiles – admittedly with coarse granularity – the time-operation of your system.

There’s yet one more kink, though. Some tasks run so infrequently or erratically that any
sort of automated profiling will fail. A watchdog that runs once a second will miss tasks
that start only hourly. It’s not unreasonable to exclude these from watchdog monitoring.
Or, we can add a bit of complexity to the code to initiate a watchdog timeout if, say, the
slow tasks don’t start even after a number of hours elapse.

Summary and Other Thoughts
I remain troubled by the fan failure described earlier. It’s easy to dismiss this as a glitch,
an unexplained failure caused by a hardware or software bug, cosmic rays, or meddling
by aliens. But others have written about identical situations with their vent fans, all
apparently made by the same vendor.

When we blow off a failure, calling it a “glitch” as if that name explains something,
we’re basically professing our ignorance. There are no glitches in our macroscopically
deterministic world. Things happen for a reason.

The fan failures didn’t make the evening news and hurt no one. So why worry?

Surely the customers were irritated, and the possible future sales of that company at least
somewhat diminished. The company escalated the general rudeness level of the world,
and thus the sum total incipient anger level, by treating their customers with contempt.
Maybe a couple more Valiums were popped, a few spouses yelled at, some kids cowered
till dad calmed down. In the grand scheme of things perhaps these are insignificant blips.

© 2004 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Yet we must remember the purpose of embedded control is to help people, to improve
lives, not to help therapists garner new patients.

What concerns me is that if we cannot even build reliable fan controllers, what hope is
there for more mission-critical applications?

I don’t know what went wrong with those fan controllers, and I have no idea if a WDT –
well designed or not – is part of the system. I do know, though, that the failures are
unacceptable and avoidable. But maybe not avoidable by the use of a conventional
watchdog. A WDT tells us the code is running. A windowing WDT tells us it’s running
with pretty much the right timing. No watchdog, though, flags software executing with
corrupt data structures, unless the data is so bad it grossly affects the execution stream.

Why would a data structure become corrupt? Bugs, surely. Strange conditions the
designers never anticipated will also create problems, like the never-ending flood of
buffer overflow conditions that plague the net, or unexpected user inputs (“we never
thought the user would press all 4 buttons at the same time!”).

Is another layer of self-defense, beyond watchdogs, wise? Safety critical apps, where the
cost of a failure is frighteningly high, should definitely include integrity checks on the
data. Low threat equipment – like this oven fan – can and should have at least a minimal
amount of code for trapping possible failure conditions.

Some might argue it makes no sense to “waste” time writing defensive code for a dumb
fan application. Yet the simpler the system, the easier and quicker it is to plug in a bit of
code to look for program and data errors.

Very simple systems tend to translate inputs to outputs. Their primary data structures are
the I/O ports. Often several unrelated output bits get multiplexed to a single port. To
change one bit means either reading the port’s current status, or maintaining a copy of the
port in RAM. Both approaches are problematic.

Computers are deterministic, so it’s reasonable to expect that, in the absence of bugs,
they’ll produce correct results all the time. So it’s apparently safe to read a port’s current
status, AND off the unwanted bits, OR in new ones, and output the result. This is a state
machine; the outputs evolve over time to deal with changing inputs. But the process
works only if the state machine never incorrectly flips a bit. Unfortunately, output ports
are connected to the hostile environment of the real world. It’s entirely possible that a bit
of energy from starting the fan’s highly inductive motor will alter the port’s setting. I’ve
seen this happen many times.

So maybe it’s more reliable to maintain a memory image of the port. The downside is
that a program bug might corrupt the image. Most of the time these are stored as global
variables, so any bit of sloppy code can accidentally trash the location. Encapsulation
solves that problem, but not the one of a wandering pointer walking over the data, or of a
latent reentrancy issue corrupting things. You might argue that writing correct code

© 2004 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

means we shouldn’t worry about a location changing, but we added a WDT to, in part,
deal with bugs. Similar concerns about our data are warranted.

In a simple system look for a design that resets data structures from time to time. In the
case of the oven fan, whenever the user selects a fan speed reset all I/O ports and data
structures. It’s that simple.

In a more complicated system the best approach is the oldest trick in software
engineering: check the parameters passed to functions for reasonableness. In the
embedded world we chose not to do this for three reasons: speed, memory costs, and
laziness. Of these, the third reason is the real culprit most of the time.

Cycling power is the oldest fix in the book; it usually means there’s a lurking bug
and a poor WDT implementation. Embedded developer Peter Putnam wrote:

Last November, I was sitting in one of a major airline’s newer 737-900 aircraft on
the ramp in Cancun, Mexico, waiting for departure when the pilot announced there
would be a delay due to a computer problem. About twenty minutes later a group
of maintenance personnel arrived. They poked around for a bit, apparently to no
avail, as the captain made another announcement. "Ladies and Gentlemen," he
said, "we're unable to solve the problem, so we're going to try turning off all
aircraft power for thirty seconds and see if that fixes it."

Sure enough, after rebooting the Boeing 737, the captain announced that "All
systems are up and running properly."

Nobody saw fit to leave the aircraft at that point, but I certainly considered it.

Better Firmware… Faster!

A One Day
Seminar

May 4th, 2007

Sheraton Braintree Hotel

37 Forbes Rd.
Braintree, MA

 Presented by Jack
Ganssle, technical
editor of Embedded

Systems Programming
Magazine, author of The

Art of Developing
Embedded Systems, The

Art of Programming
 Embedded Systems, The
Firmware Handbook, and

The Embedded
Systems Dictionary

 Registration form on last

page of this brochure

 Limited seating; sign up
now and guarantee a

spot.

 The Ganssle Group
PO Box 38346

Baltimore, MD 21231
(410) 504-6660

fax: (647) 439-1454

 register@ganssle.com
www.ganssle.com

For Engineers and Programmers

This seminar will teach you new ways to build higher
quality products in half the time.

 80% of all embedded systems are delivered late…
Sure, you can put in more hours. Be a hero. But working harder is not a sus-
tainable way to meet schedules. We’ll show you how to plug productivity
leaks. How to manage creeping featurism. And ways to balance the conflicting
forces of schedules, quality and functionality.

 … yet it’s not hard to double development productivity
Firmware is the most expensive thing in the universe, yet we do little to con-
trol its costs. Most teams deliver late, take the heat for missing the deadline,
and start the next project having learned nothing from the last. Strangely, ex-
perience is not correlated with fast. But knowledge is, and we’ll give you the
information you need to build code more efficiently, gleaned from hundreds
of embedded projects around the world.

 Bugs are the #1 cause of late projects…
New code generally has 50 to 100 bugs per thousand lines. Traditional debug-
ging is the slowest way to find bugs. We’ll teach you better techniques proven
to be up to 20 times more efficient. And show simple tools that find the night-
marish real-time problems unique to embedded systems.

 … followed by poor scheduling
Though capricious schedules assigned without regard for the workload are
common, even developers who make an honest effort usually fail. We’ll show
you how to decompose a product into schedulable units, and how to use killer
techniques like Wideband Delphi to create more accurate estimates.

 The Indust
Spend a day with Jack Ganssle,

well-known author of the most popular books on embedded systems, technical
editor and columnist for Embedded Systems Programming, and designer of
over 100 embedded products. You’ll learn new ways to produce projects fast
without sacrificing quality. This seminar is the only non-vendor training event
that shows you practical solutions that you can implement immediately. We’ll
cover technical issues – like how to write embedded drivers and isolate per-
formance problems – as well as practical process ideas, including how to man-
age your people and projects. After taking this class you’ll receive a certificate
awarding you 0.7 Continuing Education Units.

Learn from the Industry's Guru

Seminar Leader
Jack Ganssle has written over 500 articles in Embedded Systems Programming, EDN, and other magazines.
His four books, The Art of Programming Embedded Systems , The Art of Developing Embedded
Systems , The Embedded Systems Dictionary, and, his most recent, The Firmware Handbook, are the
industry’s standard reference works

Jack lectures internationally at conferences and to businesses, and has been the keynote speaker at the Embedded
Systems Conferences in both Boston and San Francisco. He founded three companies, including one of the largest
embedded tool providers. His extensive product development experience forged his unique approach to building better
firmware faster.

Jack has helped over 600 companies and thousands of developers improve their firmware and consistently deliver better
products on-time and on-budget.

Languages
• C, C++ or Java?
• Code reuse—a myth? How can you benefit?
• Stacks and heaps—deadly resources you can control.

Structural Embedded Systems

• Manage features… or miss the schedule!
• Do commercial RTOSes make sense?
• Five design schemes for faster development

Overcoming Deadline Madness

• Negotiate realistic deadlines… or deliver late.
• Scheduling - the science versus the art.
• Overcoming the biggest productivity busters.

Stamp Out Bugs!

• Unhappy truths of ICEs, BDMs, and debuggers.
• Managing bugs to get good code fast.
• Quick code inspections that keep the schedule on-track.
• Cool ways to find hardware/software glitches.

Managing Real -Time Code

• Design predictable real-time code.
• Preventing system performance debacles.
• Troubleshooting and eliminating erratic crashes.
• Build better interrupt handlers.

Interfacing to Hardware

• Understanding high-speed signal problems.
• Building peripheral drivers faster.
• Cheap - and expensive - ways to probe SMT parts.

How to Learn from Failures… and Successes

• Embedded disasters, and what we can learn .
• Using postmortems to accelerate the product delivery.
• Seven step plan to firmware success.

Course Outline

0

10

20

30

40

50

60

49
50

57
18

64
86

72
54

80
22

87
90

95
58

10
32

6

11
09

4

11
86

2

12
63

0

13
39

8

14
16

6

14
93

4

Microseconds

P
ro

ba
bi

lit
y

Do your routines execute in a usec or a week? This function is
all over the map, from 6 to 15 msec. You’ll learn to write real-
time code proactively, finding timing issues early.

Why Take This Course?

Frustrated with schedule slippages? Bugs driving you
batty? Product quality sub-par? Can you afford not
to take this class?

 We’ll teach you how to get your products to market
faster with fewer defects. Our recommendations are
practical, useful today, and tightly focused on em-
bedded system development. Don’t expect to hear
another clever but ultimately discarded software
methodology. You’ll also take home a 150-page
handbook with algorithms, ideas and solutions to
common embedded problems.

Here is what some
of our attendees

have said:
Thanks for a great seminar. We really enjoyed it! We're already putting the ideas you

gave us to use.
J. Sargent, CSC

Registration Form on Last Page

I like your practical, no nonsense advice backed up with numbers, your dynamic presentation style, and the nice
handout that you gave us. I will definitely recommend your seminar to other programmers.

Ed Chehovin, US Navy

I just wanted to say thanks for a great seminar last week. Already the information you gave has proven useful – I
used that ISR trick and we finally found an error we’ve been chasing for months.

Sandeep Miran

Thank you so much for a great class! Now my co-workers think I’m the guru!
Dana Woodring, Northrup Grumman

Did you know that…

 … doubling the size of the code results in much more than twice the work? In this seminar you’ll learn ways unique

to embedded systems to partition your firmware to keep schedules from skyrocketing out of control.

 … you can reduce bugs by an order of magnitude before starting debugging? Most firmware starts off with a 5-

10% error rate – 500 or more bugs in a little 10k LOC program. Imagine the impact finding all those has on
the schedule! Learn simple solutions that don’t require revolutionizing the engineering department.

 … you can create a predictable real-time design? This class will show you how to measure the system’s perform-

ance, manage reentrancy, and implement ISRs with the least amount of pain. You’ll even study real timing
data for common C constructs on various CPUs.

 … a 20% reduction in processor loading slashes development time? Learn to keep loading low while simplifying

overall system design.

 … few watchdog timers are properly implemented? Most are partial solutions to a complex problem. We’ll show

you how to build an awesome WDT.

 … most interrupt-driven timers are improperly coded? Subtle asynchronous issues always lead to erratic timer reads

and crashes. The solutions are not obvious, but easy to implement.

 … reuse is usually a waste of time? Most companies fail miserably at it. Though promoted as the solution to the

software crisis, it’s much tougher than advertised. You’ll learn the ingredients of successful reuse.

If you can’t take the time to travel, we can present this seminar at
your facility.

We will train all of your developers and focus on the challenges unique to
your products and team.

Thanks for the terrific
seminar here at
ALSTROM yesterday!
It got rave reviews from
a pretty tough crowd.

Thanks for a valuable, pragmatic, and
informative lesson in embedded systems
design. All the attendees thought it was
well worth their time.

Cheryl Saks, ALSTROM

Craig DeFilippo, Pitney Bowes

I just wanted to thank you again for the great class last week.
With no exceptions, all of the feedback from the participants
was extremely positive. We look forward to incorporating many
of the suggestions and observations into making our work here
more efficient and higher quality.

Carol Batman, INDesign LLC

Contact us for info on how
we can bring this seminar
to your company

E-mail: info@ganssle.com
or call us at 410-504-6660

What are you doing to upgrade your skills? What are you doing to help your engineers succeed?

 Do you consistently produce quality firmware on schedule? If not . . . what are you doing
about it?

Better Firmware… Faster!

A one-day class presented on
Friday, May 4th, 2007

Sheraton Braintree Hotel

Spend a day with Jack Ganssle, Embedded System Programming’s Technical Editor and columnist, and
learn new ways to get your products to market faster, and improve your resume with the

0.7 Continuing Education Unite you’ll be awarded.

Registration Information

All of this, plus 150 pages of handouts, for just $695 per person. Plus you will receive a personalized certificate of
completion at the end of the course.

 Groups of 3 or more registering together pay only $595 each.

 Register early and save. Sign up by April 4th, and receive a $50.00 discount.

 Fax this form to 647-439-1454. Or, register by phone at 410-504-6660 or via email to register@ganssle.com.

 Cancellations made more than 14 days prior to the class are refundable less a $50 fee. Cancellations made within
14 days are non-refundable, but are 100% transferable to all courses we offer.

 Today’s Date: Registration Form

 Name: _______________________________________

 Company: _______________________________________

 Mailing address: _______________________________________

 City, State, Zip: _______________________________________

 Phone: ___________________ Extension:________

 Fax: ___________________

 Email: ___________________

 Location: Boston (Braintree)

 Number of attendees: ________

 Purchase Order Attached. P.O. Number: _____________

 Charge to: � Visa � MasterCard � American Express

 Card Number: _________________________ Expires: _______

 Name on Card: ___________________________

 Signature: ___________________________

Fax this to 647-439-1454. Or, call us at 410-504-6660.

Sheraton Braintree Hotel

37 Forbes Rd.
Braintree, MA

Tel: (781) 848-0600
 website: www.starwoodhotels.com

From Boston Logan Airport:
 Take I-93 south to the Brain-
tree exit (Exit 6). Bear right off the
exit and at the second set of lights
turn right. The hotel is on the left.

From Cape Cod:
 Take rte 3 North to 93 South
Take the Braintree exit (6) and fol-
low the above directions.

From the West:
 Take Rte 90 East to exit 14
(I-95). Follow 1-95 S to I-93 N and
take Exit 6, bear right off exit and
take a right at the 1st set of lights.
Hotel is on the left.

